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Previous studies carried out in the last two decades1 demon
strated that formation of the (Tr-allyl)palladium complexes from 
allylic esters uniformly proceeds via an anti mechanism (1 -*• 3).2 

The following reaction with stabilized C-nucleophiles leads to 4, 
again via an anti mechanism1 (Scheme I). In contrast, reaction 
of the complexes with organometallics,3 such as aryl- and vinylzinc 
halides,4,5 gives syn products in the second step. 

However, a syn mechanism for the complex formation should 
also be stereoelectronically allowed, in spite of being apparently 
higher in energy. This raises the question of whether or not the 
syn route could be boosted, e.g., by a precoordination of the Pd(O) 
reagent to the allylic leaving group.6 We prepared phosphino-
acetate9 2 (Scheme I) and treated it with LiCH(CO2Et)2 and a 
catalytic-(5 mol %)to-stoichiometric amount of Pd(O) in various 
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solvents and temperature range. We found that with this substrate 
we could achieve up to a 3:2 ratio11 of the products 4 and 6. Since 
blank experiments showed that no epimerization of 2 occurred 
prior to the reaction, this result suggests that the minor product 
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(11) (Ph3P)4Pd (25 mol %), THF, 45 0C, 15 min. 
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6 might really arise by the mechanism we looked for, involving 
precomplexation of the palladium reagent to the Ph2P- group and 
formation of the complex 5. But still, the competing anti 
mechanism in the first step remains the dominant reaction pathway 
giving finally the epimer 4 as the major product. 

Although the stereoselectivity we achieved was not good,12 this 
result was encouraging, and we turned our attention to sterically 
biased substrates 7, 10, and 11 (Scheme II). The acetate 7 is 
known5 to form the intermediate Pd complex 8 via an ordinary 
anti mechanism and produce phenyl derivative 9 on the subsequent 
syn reaction with PhZnCl. In contrast, the epimeric acetate 10 
is inert for the severe steric hindrance.5 It turned out, to our 
delight, that the ester 11 of the same configuration as the inert 
acetate 10 readily reacted with PhZnCl/Pd(0), giving 9 as the 
sole product, identical with the compound obtained from the 
acetate 7 (Scheme II). Since the second step is known4,5 to 
proceed stereospecifically in a syn fashion, the intermediate 
complex 8 formed from 11 should be the same as that arising from 
7. This is, again, consistent with the syn mechanism of the first 
step. Similarly, the phosphino ester 12 derived from (~)-trans-
verbenol readily affords the corresponding phenyl derivative 14 
as the result of the syn.syn two-step pathway (Scheme III). In 
contrast, the acetate 15 is inert under the same reaction conditions, 
while its epimer 16 reacts sluggishly, producing finally 14 via the 
ordinary anti,syn mechanism involving the complex 13. 

Since we have observed a clean syn mechanism of the complex 
formation with our sterically biased allylic esters, it was of interest 
to explore the reaction with a substrate free of any steric hindrance. 
(-)-Acetate 18 (58% ee) is known to produce (-)-20 (58% ee) 
via the anti.anti sequence (Scheme IV) on a Pd(0)-catalyzed 
reaction with dimethyl sodiomalonate.2' We have prepared 
(diphenylphosphino)acetate (+)-21 from the enantiomeric alcohol 
(+)-17 of >99% ee13 and carried out the Pd(0)-catalyzed reaction 
under the standard conditions. To our surprise, the reaction 
furnished a dextrorotatory product, which is consistent with the 
anti,anti pathway. Optical rotation of the product (+)-20 indicated 
about 84% optical purity,17 while 1H NMR spectrum taken in the 
presence of Eu(tfc)3 implied 74% ee.18 It is obvious that in this 
case the precoordination of the Pd(O) reagent largely failed. 
However, the lower enantiomeric purity of the product suggests 
that 21 reacts via a mixture of two mechanisms, the classical 
anti,anti fashion (87%) accompanied by ca. 13% of the syn,anti 
pathway in contrast to the acetate 18 where the former clearly 
dominates. Hence, the anti,anti mechanism is apparently lower 
in energy even for the phosphinoacetate 21. 

In conclusion, these experiments bring, for the first time, an 
evidence that syn mechanism of the formation of palladium 
?)3-complex from allylic substrates may be enforced by pre
coordination of the Pd(O) reagent to a specially designed leaving 
group.19 This finding broadens the applicability of the transi
tion-metal-catalyzed allylic substitution, since it shows that in 
substrates where the classical anti route of the complex formation 

is impaired by steric congestion, our new leaving group enables 
the reaction to occur. 
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The molybdenum cofactor, Mo-co, is a dissociable cofactor 
common to xanthine oxidase, sulfite oxidase, nitrate reductase, 
and other enzymes involved in oxygen atom transfer.1 Mo-co 
possesses one molybdenum atom and a pterin component known 
as molybdopterin.2 The proposed structure for molybdopterin 
is supported by spectroscopic and chemical data.2"4 

OPO3
2" 

molybdopterin 
The function of molybdopterin in Mo-co has not been deter

mined. Molybdopterin may be present to coordinate the mo
lybdenum atom through the dithiolene sulfur atoms.4 On the 
basis of the known redox roles played by tetrahydropterin cofactors 
in other metalloenzymes,5 we propose a different, perhaps ad
ditional, role for molybdopterin. We show that a tetrahydropterin 
is capable of reducing molybdenum(VI) in a sulfur coordination 
environment. 

Mo02(detc)2 [detc = diethyldithiocarbamate] has been in
tensely studied because it mimics certain aspects of the Mo site 
in Mo-co-containing enzymes.6"8 The reaction chemistry of 
Mo02(detc)2 includes the oxo-transferase activity characteristic 
of molybdoenzyme substrate reactions.9"12 We have found that 
6,7-dimethyl-5,6,7,8-tetrahydropterin (H4dmp) is able to reduce 
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